STATSCALE SEMINARS
PREVIOUS SEMINAR - 18th June 2021

Speaker: Runmin Wang (Southern Methodist University)

Title: Dating the Break in High Dimensional Data

Abstract - This talk is concerned with estimation and inference for the location of a change point in the mean of independent high-dimensional data. Our change point location estimator maximizes a new U-statistic based objective function, and its convergence rate and asymptotic distribution after suitable centering and normalization are obtained under mild assumptions. Our estimator turns out to have better efficiency as compared to the least squares based counterpart in the literature. Based on the asymptotic theory, we construct a confidence interval by plugging in consistent estimates of several quantities in the normalization. We also provide a bootstrap-based confidence interval and state its asymptotic validity under suitable conditions. Through simulation studies, we demonstrate favorable finite sample performance of the new change point location estimator as compared to its least squares based counterpart, and our bootstrap-based confidence intervals, as compared to several existing competitors. The usefulness of our bootstrapped confidence intervals are illustrated in a genomics data set.

 

RETURN TO SEMINAR HOMEPAGE