Changepoint modelling in spatio-temporal processes with application to Ireland wind data

StatScale ECR Meeting, 14-16 Dec 2022, Brighton

Gaurav Agarwal Coauthors: Idris Eckley and Paul Fearnhead

Mathematics & Statistics Lancaster University

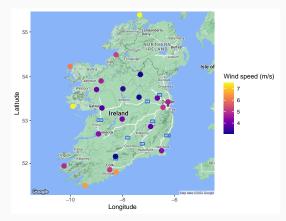
Motivation: Ireland Wind Data

- global goal of **sustainable environment**, wind power clean energy source

- vital to evaluate country's wind resource

Motivation: Ireland Wind Data

Spatio-temporal data: data indexed over space and time

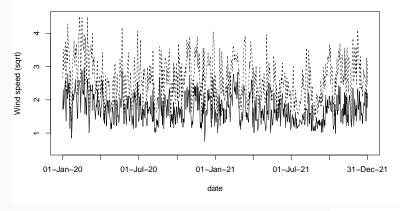


Spatial distribution of wind speed, averaged over a two year period (1-Jan-2020 to 31-Dec-2021); may depict a change in pattern of wind speed over time.

Motivation: Ireland Wind data

Time series plots

Wind speeds at two locations



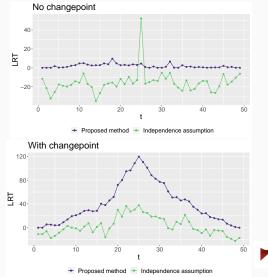
evidence of spatial and temporal dependencies

- Changepoints extensively studied for time series, but **limited literature** for change in spatio-temporal processes.
- Increasingly, spatio-temporal data is becoming **routinely** available.
- Assumption of stationarity for practical convenience.
- Spatio-temporal data exhibits **nonstationarity**, requiring methods for detecting changes in the process.

- Bayesian methods such as Majumdar et al. (2005) and Altieri et al. (2015) usually have very **specific model** structures for spatio-temporal changes.
- Gromenko et al. (2017) considered at most one change point, assuming **separability** of space and time.
- Recently, Zhao et al. (2019) defined a nonseparable pairwise likelihood-based approach.
- However, for simplicity, assume data across segments are independent.

Motivation- Issues of independent segment assumptions

statistical inconsistencies



- Let Y(s,t) be a stochastic process, where $s \in \mathbb{R}^d$: location, and $t \in \mathbb{R}$: time point.
- For each time $t = t_1, \ldots, t_T$, there are m observations.
- $\boldsymbol{Y} = \{Y(\boldsymbol{s}_1, t_1), \dots, Y(\boldsymbol{s}_m, t_1), \dots, Y(\boldsymbol{s}_1, t_T), \dots, Y(\boldsymbol{s}_m, t_T)\}^\top$, with n = mT observations.
- The vector $Y \sim \mathcal{MVN}(\mu_{n \times 1}, \Sigma_{n \times n})$, where $\Sigma = [\text{Cov}\{Y(s_i, t_i), Y(s_j, t_j)\}]_{i,j=1}^n$ is the covariance matrix and $\mu = [E\{Y(s_1, t_1)\}, \dots, E\{Y(s_m, t_T)\}].$

Consider a spatio-temporal process

$$Y(\boldsymbol{s},t) = \mu(\boldsymbol{s},t) + \epsilon(\boldsymbol{s},t),$$

 $t = 1, \dots, T$ and $s \in S$, where $\mu(s, t)$ is deterministic mean and $\epsilon(s, t)$ is the mean-zero error process.

- Use a parametric nonseparable **nonstationary** space-time **covariance function**, which allows spatial process to evolve over time (Qadir, G.A. and Sun, Y., 2022).
- Considers time-varying spatial parameters.
- $\operatorname{Cov}\{Y(\boldsymbol{s},t_i),Y(\boldsymbol{s}+\boldsymbol{h},t_j)\}=C(\boldsymbol{h},t_i,t_j)$

Change in spatial process

Denote all the spatial covariance parameters by θ , nuisance parameters by γ , the null hypothesis of no change is

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \dots \boldsymbol{\mu}_T$$
 and $\boldsymbol{\theta}_1 = \boldsymbol{\theta}_2 = \dots \boldsymbol{\theta}_T = \boldsymbol{\theta}_0,$

against change in mean or spatial dependence

$$H_{A_1}: \mu_1 = \dots = \mu^{(1)} \neq \mu_{\tau+1} = \dots = \mu^{(2)}, \quad \text{or}$$

$$\boldsymbol{ heta}_1 = \dots \dots \boldsymbol{ heta}_{ au} = \boldsymbol{ heta}^{(1)}
eq \boldsymbol{ heta}_{ au+1} = \dots \boldsymbol{ heta}_T = \boldsymbol{ heta}^{(2)}.$$

Likelihood ratio test statistics:

$$\mathsf{LR}_{\tau} = -2\mathsf{ln}\Bigg[\frac{\max\limits_{\boldsymbol{\mu},\boldsymbol{\theta}_{0},\boldsymbol{\gamma}_{0}}f_{\boldsymbol{Y}}(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\theta}_{0},\boldsymbol{\gamma}_{0})}{\max\limits_{\boldsymbol{\mu}^{(1)},\boldsymbol{\mu}^{(2)},\boldsymbol{\theta}^{(1)},\boldsymbol{\theta}^{(2)},\boldsymbol{\gamma}_{1}}f_{\boldsymbol{Y}}\{\boldsymbol{y};\boldsymbol{\mu}^{(1)},\boldsymbol{\mu}^{(2)},\boldsymbol{\theta}^{(1)},\boldsymbol{\theta}^{(2)},\boldsymbol{\gamma}_{1}\}}\Bigg].$$

Markov Likelihood and Estimation

- Log-likelihood of \boldsymbol{Y} : $\ell(\boldsymbol{\mu}, \boldsymbol{\theta} \mid \boldsymbol{Y}) = -\{\log \det \Sigma(\boldsymbol{\theta}) + (\boldsymbol{Y} \boldsymbol{\mu})^{\top} \Sigma(\boldsymbol{\theta})^{-1} (\boldsymbol{Y} \boldsymbol{\mu}) + n \log 2\pi \}/2$
- computationally challenging: it involves the inverse of a high-dimensional covariance matrix, complexity $O(m^3T^3)$
- storing very large matrices can exhaust the memory of the machine
- To overcome the computational issues, we implement a Markov likelihood approach for optimization

Markov Likelihood and Estimation

• The joint distribution of Y_1, \ldots, Y_T :

 $\{Y_1, \ldots, Y_T\} = \{Y_T \mid Y_{T-1}, \ldots, Y_1\} \ldots \{Y_3 \mid Y_2, Y_1\} \{Y_2 \mid Y_1\} \{Y_1\}$

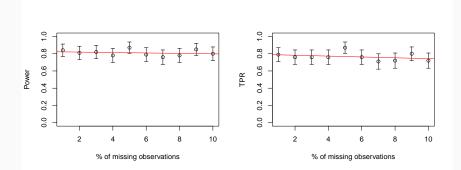
- most real-world spatio-temporal processes can be characterized conditional on the process in the **recent past**.
- First-order Markov assumption, joint distribution

$$\{\mathbf{Y}_1,\ldots,\mathbf{Y}_T\} = \prod_{t=2}^T \{\mathbf{Y}_t \mid \mathbf{Y}_{t-1}\} \times \{\mathbf{Y}_1\}.$$

• relatively simple conditional distributions, complexity reduced to $O(m^3T)$ from $O(m^3T^3)$.

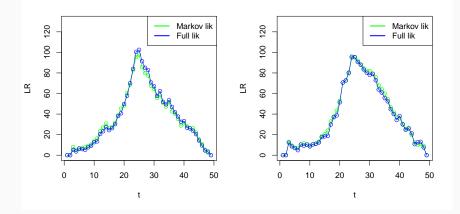
- Searching through all candidate changepoints $\tau = 1, \ldots, T-1$, computationally demanding.
- Each point requires fitting a spatio-temporal model.
- Use optimistic search strategy (Kovács et al., 2020), adaptively determine the next search point, $O(\log T)$ evaluations instead of O(T).
- Combine with binary segmentation for multiple changepoints.

method works with missing observations, quite common in spatio-temporal data



Simulation study: Markov approximation

comparison of Markov likelihood with Full likelihood

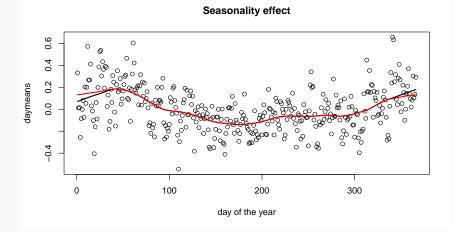


change in spatial dependence

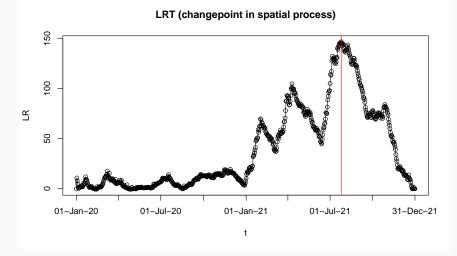
size of change	Method	Power	TPR
0.025	Proposed (Markov Lik)	0.7	0.4
	Proposed (Full Lik)	0.74	0.43
	Ind Segment (Pair Lik)	0	0
0.05	Proposed (Markov Lik)	1	0.91
	Proposed (Full Lik)	1	0.95
	Ind Segment (Pair Lik)	0.4	0.1
0.2	Proposed (Markov Lik)	1	1
	Proposed (Full Lik)	1	1
	Ind Segment (Pair Lik)	0.7	0.2
0.3	Proposed (Markov Lik)	1	1
	Proposed (Full Lik)	1	1
	Ind Segment (Pair Lik)	0.95	0.5

16/22

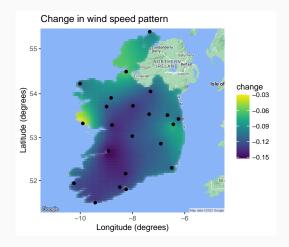
- The Irish Meterological Service (Met Éireann) provides wind speed data at 22 synoptic weather stations across the country.
- This data can be used to monitor, analyse and predict Ireland's wind power resource.
- We consider daily **wind speed** data over a **2 year** period for the 22 synoptic weather stations.
- The data is available at https://www.met.ie/climate/available-data.



seasonality estimated using 5 years historical data from 2015-2019, smoothed at start and end of year (in red)



changepoint: 24 july 2021, threshold 20-30 reason: climate statement about heatwaves



changes higher at some locations than others.

- Use spatio-temporal kriging for **prediction**.
- Left 20% data out to check the prediction accuracy with changepoint model (CP) and compare with a no-change model (No CP).
- Point prediction: Root Mean Squared Error (RMSE)
- Probabilistic prediction: Continuous Rank Probability Scores (CRPS), Logarithmic Score (logS)

Metric	No CP	CP
RMSE	0.54	0.52
CRPS	0.32	0.29
logS	0.87	0.83

- A likelihood-based methodology for estimation of **changepoints** and model parameters of **spatio-temporal processes**.
- Fit a nonstationary changepoint model without any independent segment assumption
- computationally efficient Markov approximation
- changepoint detection and missing data prediction in daily wind speeds across different synoptic weather stations in Ireland over two years

Thank you for your attention (g.agarwal@lancaster.ac.uk).

