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S-shaped functions

• We say that f : [0, 1] → R is S-shaped if it is increasing, and if
there exists an inflection point m0 ∈ [0, 1] such that f is convex
on [0,m0] and concave on [m0, 1].

• f is not required to be continuous at m0 or Lipschitz on [0, 1].
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S-shaped functions

• We say that f : [0, 1] → R is S-shaped if it is increasing, and if
there exists an inflection point m0 ∈ [0, 1] such that f is convex
on [0,m0] and concave on [m0, 1].

• f is not required to be continuous at m0 or Lipschitz on [0, 1].

• Aim: Estimate an unknown S-shaped regression function and its
inflection point(s).
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S-shaped regression functions

• Modelling the dependence of a response variable on a covariate
as an S-shaped function: many examples in applied science, such
as growth or development curves for individuals or
populations, and learning curves for skill proficiency

Source: Lee and Werner (2008)
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S-shaped regression functions

Further examples:

• Production or utility curves in economics
(e.g. output vs resource levels, or sales revenue vs advertising)

• Dose-response curves in biochemistry and medicine

• Dependence of crop yields on soil salinity (inverted S-shaped
curve) in agronomy (van Genuchten and Gupta, 1993)
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Parametric methods

• Restricting to parametric subclasses of sigmoidal curves, e.g.
generalised logistic functions

x 7→ C +
B

(1 + e−bx+c)κ
with B, b, κ > 0, C , c ∈ R;

• Piecewise linear regression with a fixed number of kinks, and
bent cable (linear–quadratic–linear) models (Chiu et al., 2006)
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Nonparametric methods

• Kernel-based methods:

▶ Identification of the inflection point of a smooth signal via local
polynomial regression and constrained bandwidth selection
(Kachouie and Schwartzman, 2013)

▶ Estimation of S-shaped production functions via
shape-constrained kernel least squares and bandwidth
selection by cross-validation (Yagi et al., 2019, 2020)

• (Penalised) least squares based on cubic B-splines defined with
respect to user-specified knots (Liao and Meyer, 2017)

• Geometric / numerical analysis approach to identifying inflection
points (Christopoulos, 2016)
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Example: LIDAR air pollution data

• Model: log P(ri ;λon)
P(ri ;λoff)

= f0(ri ) + ξi , i = 1, . . . , n

• f0(r) = −C
∫ r
0 g0(s) ds for r ≥ 0, where g0(s) is the

concentration of mercury at distance s metres away from the
detector, and C = 1.6× 10−5 ng−1m2
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Example: LIDAR air pollution data
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S-shaped least squares estimators (LSEs)

• For m ∈ [0, 1], denote by Fm the class of all S-shaped functions
on [0, 1] with an inflection point at m: this is a convex cone

• Denote by F =
⋃

m∈[0,1]Fm the class of all S-shaped functions
on [0, 1]: this is not convex

• Observe (x1,Y1), . . . , (xn,Yn) ∈ [0, 1]× R with x1 < · · · < xn

• For a class F̃ of functions on [0, 1], we say that f̃n : [0, 1] → R is
an LSE over F̃ based on {(xi ,Yi ) : 1 ≤ i ≤ n} if it minimises

f 7→
∑n

i=1

(
Yi − f (xi )

)2
=: RSSn(f ) over F̃
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Existence of S-shaped LSEs

Proposition. For each m ∈ [0, 1], there exists an LSE f̃ mn over
Fm that is uniquely determined at x1, . . . , xn, and there exists
an LSE f̃n over F with an inflection point in {x2, . . . , xn−1}.

• Form f̂ mn by linear interpolation: this may not lie in Fm if
m /∈ {x1, . . . , xn}; it is the LSE over a modified class Hm
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uniquely defined on {x1, . . . , xn}
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L2 projection framework

• For a general probability distribution P on [0, 1]×R with a finite
second moment, consider minimising

f 7→ L(f ,P) =

∫
[0,1]×R

(
y − f (x)

)2
dP(x , y)

over Fm for a fixed m ∈ [0, 1], or over F .

• ψ0
m(P) = argminf ∈Fm L(f ,P) and ψ0(P) = argminf ∈F L(f ,P)

are well-defined under mild conditions on P, but uniqueness
(PX almost everywhere) is not guaranteed for the latter.

• Continuity results for (m,P) 7→ ψ0
m(P), P 7→ ψ0(P),

(m,P) 7→ inff ∈Fm L(f ,P) and P 7→ inff ∈F L(f ,P) with respect
to the 2-Wasserstein distance W2 and notions of set convergence
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Consistency and robustness

• Regression framework (triangular array scheme):
Yni = f0(xni ) + ξni for n ∈ N and 1 ≤ i ≤ n, where ξn1, . . . , ξnn
are i.i.d. with mean zero and finite variance

• Consistency when f0 ∈ F has a unique inflection point m0:

Theorem. Suppose PX
n = n−1

∑n
i=1 δxni converges weakly to a

distribution PX
0 with suppPX

0 = [0, 1] and PX
0 ({m}) = 0 for all

m ∈ [0, 1]. For n ∈ N, let g̃n ∈ {f̂ m0
n , f̃n} and let m̃n denote any

inflection point of g̃n. Then for any closed A ⊆ [0, 1] \ {m0},

m̃n
p→ m0, sup

x∈A
|(g̃n − f0)(x)|

p→ 0.

• Robustness to misspecification (f0 /∈ F): “f̂ m0
n , f̃n converge to

the projections of f0 onto Fm0 ,F respectively”
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Finite-sample risk bounds

• For fixed n ∈ N, consider a fixed design regression model
Yi = f0(xi ) + ξi , i = 1, . . . , n in which ξ1, . . . , ξn are
independent and sub-Gaussian with parameter 1.

• Global loss function: for g : [0, 1] → R, let
∥g∥n ≡ ∥g∥L2(PX

n )
=

(∑n
i=1 g

2(xi )/n
)1/2

.

• We prove sharp oracle inequalities to quantify the worst-case

and adaptive performance of S-shaped LSEs f̃n: these apply to
any regression function f0 : [0, 1] → R and take the form

E
(
∥f̃n − f0∥n

)
≤ inf

f ∈F

{
∥f0 − f ∥n + rn(f )

}
, where

▶ ∥f0 − f ∥n is an approximation error term with leading constant 1;
▶ rn(f ) is an estimation error term.
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Finite-sample risk bounds: worst-case

• Let R := n−1(xn − x1)/min2≤i≤n(xi − xi−1). For f ∈ F , define

V (f ) := f (xn)− f (x1) = max
1≤i≤n

f (xi )− min
1≤i≤n

f (xi ).
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V (f ) := f (xn)− f (x1) = max
1≤i≤n

f (xi )− min
1≤i≤n

f (xi ).

Theorem. There exists a universal C > 0 such that for every
f0 : [0, 1] → R, n ≥ 2 and LSE f̃n over F , we have

∥f̃n − f0∥n ≤

inf
f∈F

{
∥f − f0∥n +

C
(
1 + V (f )

)1/3
n1/3

∧
CR1/10

(
1 + V (f )

)1/5
n2/5

}
+

√
8t

n

with probability at least 1− e−t , for every t > 0.
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Finite-sample risk bounds: worst-case

• Let R := n−1(xn − x1)/min2≤i≤n(xi − xi−1). For f ∈ F , define

V (f ) := f (xn)− f (x1) = max
1≤i≤n

f (xi )− min
1≤i≤n

f (xi ).

Conclusion: when f0 ∈ F , or f0 is close to F in an L2(PX
n ) sense:

• f̃n attains the optimal worst-case risk of order n−2/5 with respect
to L2(PX

n )-loss when the design points are ‘near-equispaced’.

• For adversarially chosen design configurations, the worst-case
risk of f̃n can be of order n−1/3.
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Finite-sample risk bounds: adaptation

• Let H be the set of piecewise affine f ∈ F with kinks in
{x2, . . . , xn−1}.

• For f ∈ H, denote by k(f ) the number of affine pieces of f , i.e.
the smallest k ∈ [n] such that f is affine on each of k
subintervals I1, . . . , Ik that partition [0, 1].
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Theorem. For every f0 : [0, 1] → R, n ≥ 2 and LSE f̃n over F ,
we have

∥f̃n − f0∥n ≤

inf
f∈H

{
∥f − f0∥n +

√
32
(
k(f ) + 1

)
n

log

(
en

k(f ) + 1

)}
+

√
2(t + log n)

n

with probability at least 1− e−t , for every t > 0.
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Finite-sample risk bounds: adaptation

• Let H be the set of piecewise affine f ∈ F with kinks in
{x2, . . . , xn−1}.

• For f ∈ H, denote by k(f ) the number of affine pieces of f , i.e.
the smallest k ∈ [n] such that f is affine on each of k
subintervals I1, . . . , Ik that partition [0, 1].

Conclusion: when f0 ∈ F , or f0 is close to F in an L2(PX
n ) sense,

• f̃n adaptively attains the parametric rate of order n−1/2 (up to a
logarithmic factor) when the approximating function f ∈ F is
piecewise affine with a small number of affine pieces.
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Inflection point estimation

• Assumptions on a sequence of regression models
Yni = f0(xni ) + ξni , i = 1, . . . , n (triangular array scheme):
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Local smoothness condition: f0 ∈ F has a unique inflection point
m0 ∈ (0, 1), and there exists B > 0 such that as x → m0, either

f0(x) = f0(m0)− B
(
1 + o(1)

)
sgn(x −m0)|x −m0|α

for some α ∈ (0, 1), or
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(
1+o(1)

)
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for some α ∈ (1,∞).

When α ≥ 3 is an odd integer, this holds if f0 is locally Cα at

m0 and f
(k)
0 (m0) = 0 ̸= f

(α)
0 (m0) for 2 ≤ k ≤ α− 1.
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Inflection point estimation

Theorem. Under the assumptions on the previous slide, let (f̃n)
be any sequence of LSEs over F , and for each n, let m̃n be an
inflection point of f̃n. Then m̃n −m0 = Op

(
(n/ log n)−1/(2α+1)

)
.
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n ) > RSSn(f̂

m0
n ) due to

misspecification: there is a long subinterval between m0 and mn

on which one of f0, f̂
mn
n is convex and the other is concave.

• However, RSSn(f̃n)− RSSn(f̂
m0
n ) ≤ 0 by definition of f̃n = f̂ m̃n

n .
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Inflection point estimation

Theorem. Under the assumptions on the previous slide, let (f̃n)
be any sequence of LSEs over F , and for each n, let m̃n be an
inflection point of f̃n. Then m̃n −m0 = Op

(
(n/ log n)−1/(2α+1)

)
.

Complementary local asymptotic minimax lower bound:

• For r > 0, let F(f0, r) := {f ∈ F :
∫ 1
0 (f − f0)

2 < r2}.
• For f ∈ F , write If for the set of inflection points of f and let
d(x , If ) := infz∈If |x − z | for x ∈ [0, 1].
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be any sequence of LSEs over F , and for each n, let m̃n be an
inflection point of f̃n. Then m̃n −m0 = Op

(
(n/ log n)−1/(2α+1)

)
.

Complementary local asymptotic minimax lower bound:

• For r > 0, let F(f0, r) := {f ∈ F :
∫ 1
0 (f − f0)

2 < r2}.
• For f ∈ F , write If for the set of inflection points of f and let
d(x , If ) := infz∈If |x − z | for x ∈ [0, 1].

Proposition. Under the same assumptions, with ξn1, . . . , ξnn
iid∼

N(0, 1) for all n, we have

sup
τ>0

lim inf
n→∞

inf
m̆n

sup
f ∈F(f0,τ/

√
n)

n1/(2α+1) Ef

(
d(m̆n, If )

)
> 0.
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Inflection point result: illustration
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Inflection point result: illustration

• S-shaped signals with m0 = 0.3:

f1(x) =

{
2(0.3−

√
0.09− x2) for x ∈ [0, 0.3)

2{0.3 +
√

0.49− (1− x)2} for x ∈ [0.3, 1];

f2(x) = sin
(
(x − 0.3)π/1.4

)
1{x≥0.3};

f3(x) = x + 1{x≥0.3};

f4(x) = 4/
(
1 + e−2(x−0.3)

)
.

• f1: α = 1/2 ⇒ rate Op(n
−1/2)

• f2: does not satisfy the assumption for any α > 0; rate
Op(n

−1/3) for kink estimation

• f3: ‘α = 0’; rate Op(n
−1) for changepoint estimation

• f4: α = 3 ⇒ rate Op(n
−1/7)
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Subinterval localisation

• To derive the rate of convergence of m̃n, we localise the analysis
of f̃n to a neighbourhood of m0.

• There is a subinterval localisation result for the piecewise
constant isotonic LSE f̄n over the class of increasing functions on
[0, 1], based on observations (x1,Y1), . . . , (xn,Yn).
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Subinterval localisation

• To derive the rate of convergence of m̃n, we localise the analysis
of f̃n to a neighbourhood of m0.

• There is a subinterval localisation result for the piecewise
constant isotonic LSE f̄n over the class of increasing functions on
[0, 1], based on observations (x1,Y1), . . . , (xn,Yn).

Proposition. Let xk < xℓ be knots of f̄n, so that f̄n(xi ) <
f̄n(xi+1) for i ∈ {k , ℓ}. Denote by f̄(k:ℓ] the isotonic LSE based

on {(xi ,Yi ) : k + 1 ≤ i ≤ ℓ}. Then f̄n = f̄(k:ℓ] on [xk+1, xℓ].
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Remedy: boundary adjustments

Proposition. For m ∈ [0, 1], let f̂ mn be the LSE over Hm based
on {(xi ,Yi ) : i ∈ [n]}, and define the residuals ε̂i = Yi − f̂ mn (xi )
for i ∈ [n]. Then for all j ∈ [n], the boundary weights

w j := −
∑j−1

i=1 ε̂i
ε̂j

1{ε̂j ̸=0}, w j := −
∑n

i=j+1 ε̂i

ε̂j
1{ε̂j ̸=0}

lie in [0, 1], and w j + w j = 1{ε̂j ̸=0}.
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ε̂j
1{ε̂j ̸=0}

lie in [0, 1], and w j + w j = 1{ε̂j ̸=0}. Let xk < xℓ be knots of f̂ mn
such that xk+1 ≤ m ≤ xℓ−1. Then f̂ mn minimises

f 7→
k−1∑
i=1

(
Yi − f (xi )

)2
+ wk

(
Yk − f (xk)

)2
over all increasing convex f : [0, 1] → R.



22/35

Remedy: boundary adjustments

Proposition. For m ∈ [0, 1], let f̂ mn be the LSE over Hm based
on {(xi ,Yi ) : i ∈ [n]}, and define the residuals ε̂i = Yi − f̂ mn (xi )
for i ∈ [n]. Then for all j ∈ [n], the boundary weights

w j := −
∑j−1

i=1 ε̂i
ε̂j

1{ε̂j ̸=0}, w j := −
∑n

i=j+1 ε̂i

ε̂j
1{ε̂j ̸=0}

lie in [0, 1], and w j + w j = 1{ε̂j ̸=0}. Let xk < xℓ be knots of f̂ mn
such that xk+1 ≤ m ≤ xℓ−1. Then f̂ mn minimises

f 7→ w ℓ

(
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Outline

1. Introduction to S-shaped regression functions

2. Definitions and theory

3. Computation

ScanAll: brute-force method

ScanSelected: refined search

SeqConReg: sequential procedure
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Computation of S-shaped LSEs: ScanAll

• Aim: given (x1,Y1), . . . , (xn,Yn) ∈ [0, 1]×R with x1 < · · · < xn,
compute the S-shaped LSE f̂n with minimal inflection point, i.e.

f̂n = f̂ m̂n
n , where m̂n = xȷ̂n and ȷ̂n = sargmin

1≤j≤n
RSSn(f̂

xj
n )

• Naive brute-force approach (ScanAll): compute f̂ mn for every
m ∈ {x1, . . . , xn}, e.g. by an active set or support reduction
algorithm (Dümbgen et al., 2007, Groeneboom et al., 2008)

▶ j 7→ RSSn(f
xj
n ) may have multiple local minima
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ScanAll: example
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Subinterval localisation

• For j ∈ {1, . . . , n}, form ĥjn by concatenating the
increasing convex LSE f̂1,j on {(xi ,Yi ) : 1 ≤ i ≤ j} and the

increasing concave LSE f̂n,j+1 on {(xi ,Yi ) : j + 1 ≤ i ≤ n}

• ĥjn may not lie in Fxj , in which case f̂
xj
n ̸= ĥjn; nevertheless, we

have the following two important facts:
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Subinterval localisation

• For j ∈ {1, . . . , n}, form ĥjn by concatenating the
increasing convex LSE f̂1,j on {(xi ,Yi ) : 1 ≤ i ≤ j} and the

increasing concave LSE f̂n,j+1 on {(xi ,Yi ) : j + 1 ≤ i ≤ n}

• ĥjn may not lie in Fxj , in which case f̂
xj
n ̸= ĥjn; nevertheless, we

have the following two important facts:

A. If ĥjn ∈ Fxj , then f̂
xj
n = ĥjn (LSE over a larger set)

B. Subinterval localisation: Given any LSE f̃n over F , if either xj
is its smallest inflection point or xj+1 is its largest inflection

point, then f̃n = ĥjn (with weights w j = 0 = 1− w j) and

Yj ≤ f̃n(xj) ≤ f̃n(xj+1) ≤ Yj+1
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Refined strategy: ScanSelected

• Computational gains based on subinterval localisation: to locate
ȷ̂n = sargmin1≤j≤n RSSn(f̂

xj
n ),

1. We can refine the search by discarding those j for which
Yj > Yj+1: only n − 1 pairwise comparisons required

2. For the remaining indices j , compute ĥjn by fitting f̂1,j and f̂n,j+1

separately on disjoint subsets of the original data

• Let J be the set of j for which ĥjn is an S-shaped function in
Fxj . Then f̂

xj
n = ĥjn for all j ∈ J by Fact A and ȷ̂n ∈ J by Fact

B, so
ȷ̂n = sargmin

j∈J
RSSn(ĥ

j
n)

• Can we use f̂1,j−1 as a warm start for computing f̂1,j?
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separately on disjoint subsets of the original data

• Let J be the set of j for which ĥjn is an S-shaped function in
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separately on disjoint subsets of the original data

• Let J be the set of j for which ĥjn is an S-shaped function in
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n = ĥjn for all j ∈ J by Fact A and ȷ̂n ∈ J by Fact

B, so
ȷ̂n = sargmin

j∈J
RSSn(ĥ
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ScanSelected: example



29/35

Sequential procedure: SeqConReg

• More efficient approach: we reveal new observations one by one,
and update the increasing convex and increasing concave least
squares fits using a mixed primal-dual bases algorithm (Fraser and

Massam, 1989, Meyer, 1999).

• Given f̂1,j−1 and a new observation (xj ,Yj), note that if

Yj ≥ f̂1,j−1(xj), then f̂1,j = f̂1,j−1 on {x1, . . . , xj}.

• Otherwise, if Yj < f̂1,j−1(xj), then start with the LSE f̂1,j−1

based on (x1,Y1), . . . , (xj−1,Yj−1), (xj , Ỹj ≡ f̂1,j−1(xj)), and
decrease the value of Ỹj .

• The LSE fit is a piecewise linear function of Ỹj ; we need to track
the changes in the ‘active’ set of kinks.
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Summary of algorithm (R package Sshaped)

1. Discard all j ∈ {1, . . . , n} for which Yj > Yj+1.

2. For each of the remaining j , use SeqConReg to compute the
increasing convex LSE f̂1,j and increasing concave LSE f̂n,j+1.

Concatenate these by linear interpolation to form ĥjn. Discard
j if ĥjn /∈ Fxj , i.e. if

f̂n,j+1(xj+2)− f̂n,j+1(xj+1)

xj+2 − xj+1
>

f̂n,j+1(xj+1)− f̂1,j(xj)

xj+1 − xj
.

3. Let J be the set of indices j retained after Steps 1 and 2.
Find

ȷ̃ = sargmin
j∈J

RSSn(ĥ
j
n).

Return (xȷ̃, ĥ
ȷ̃
n) = (m̂n, f̂n).
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Running time comparison
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Log-log plots of the running time (in seconds) of the SeqConReg (▲), ScanSelected (•) and ScanAll (■)
algorithms, for sample sizes n ∈ {100, 200, 500, 1000} and noise levels σ ∈ {1, 0.1, 0.01}
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Example: simulated data

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

y



33/35

Example: LIDAR air pollution data
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Thank you for listening!
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