S-shaped function estimation

Oliver Feng

Statistical Laboratory, University of Cambridge

Institut Henri Poincaré, 19 July 2022

Joint work with Yining Chen (LSE), Qiyang Han (Rutgers), Ray Carroll (Texas A&M) and Richard J. Samworth (Cambridge)

1. Introduction to S-shaped regression functions

Applications and examples

2. Definitions and theory

3. Computation

< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ Ξ ∽ ♀ 2/35

S-shaped functions

- We say that f: [0,1] → ℝ is S-shaped if it is increasing, and if there exists an inflection point m₀ ∈ [0,1] such that f is convex on [0, m₀] and concave on [m₀, 1].
- f is not required to be continuous at m_0 or Lipschitz on [0, 1].

S-shaped functions

- We say that f: [0,1] → ℝ is S-shaped if it is increasing, and if there exists an inflection point m₀ ∈ [0,1] such that f is convex on [0, m₀] and concave on [m₀, 1].
- f is not required to be continuous at m_0 or Lipschitz on [0, 1].
- Aim: Estimate an unknown S-shaped regression function and its inflection point(s).

S-shaped regression functions

 Modelling the dependence of a response variable on a covariate as an S-shaped function: many examples in applied science, such as growth or development curves for individuals or populations, and learning curves for skill proficiency

S-shaped regression functions

Further examples:

- **Production or utility curves** in economics (e.g. output vs resource levels, or sales revenue vs advertising)
- Dose-response curves in biochemistry and medicine
- Dependence of crop yields on soil salinity (inverted S-shaped curve) in agronomy (van Genuchten and Gupta, 1993)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parametric methods

• Restricting to parametric subclasses of sigmoidal curves, e.g. generalised **logistic functions**

$$x\mapsto C+rac{B}{(1+e^{-bx+c})^{\kappa}} \quad ext{with } B,b,\kappa>0,\ C,c\in\mathbb{R};$$

• **Piecewise linear regression** with a fixed number of kinks, and bent cable (linear-quadratic-linear) models (Chiu et al., 2006)

<ロト < 団 > < 臣 > < 臣 > 臣 > ○ Q (6/35

Nonparametric methods

- Kernel-based methods:
 - Identification of the inflection point of a smooth signal via local polynomial regression and constrained bandwidth selection (Kachouie and Schwartzman, 2013)
 - Estimation of S-shaped production functions via shape-constrained kernel least squares and bandwidth selection by cross-validation (Yagi et al., 2019, 2020)
- (Penalised) least squares based on **cubic B-splines** defined with respect to user-specified knots (Liao and Meyer, 2017)
- Geometric / numerical analysis approach to identifying inflection points (Christopoulos, 2016)

Example: LIDAR air pollution data

- Model: $\log \frac{P(r_i;\lambda_{\text{on}})}{P(r_i;\lambda_{\text{off}})} = f_0(r_i) + \xi_i, \quad i = 1, \dots, n$
- f₀(r) = -C ∫₀^r g₀(s) ds for r ≥ 0, where g₀(s) is the concentration of mercury at distance s metres away from the detector, and C = 1.6 × 10⁻⁵ ng⁻¹ m²

Example: LIDAR air pollution data

▶ < 臣 ▶ 臣 < ? Q @ g

♥ 9/35

Outline

1. Introduction to S-shaped regression functions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○ 10/35

2. Definitions and theory

Consistency and robustness Finite-sample risk bounds Inflection point estimation

3. Computation

S-shaped least squares estimators (LSEs)

- For m∈ [0,1], denote by F^m the class of all S-shaped functions on [0,1] with an inflection point at m: this is a convex cone
- Denote by *F* = ∪_{m∈[0,1]} *F^m* the class of all S-shaped functions on [0, 1]: this is **not convex**

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで 11/35

S-shaped least squares estimators (LSEs)

- For m∈ [0, 1], denote by F^m the class of all S-shaped functions on [0, 1] with an inflection point at m: this is a convex cone
- Denote by *F* = ∪_{m∈[0,1]} *F^m* the class of all S-shaped functions on [0, 1]: this is **not convex**
- Observe $(x_1, Y_1), \ldots, (x_n, Y_n) \in [0, 1] \times \mathbb{R}$ with $x_1 < \cdots < x_n$
- For a class *F* of functions on [0, 1], we say that *f*_n: [0, 1] → ℝ is an LSE over *F* based on {(*x_i*, *Y_i*) : 1 ≤ *i* ≤ *n*} if it minimises *f* → ∑ⁿ_{i=1}(*Y_i f*(*x_i*))² =: RSS_n(*f*) over *F*

Proposition. For each $m \in [0, 1]$, there exists an LSE \tilde{f}_n^m over \mathcal{F}^m that is uniquely determined at x_1, \ldots, x_n , and there exists an LSE \tilde{f}_n over \mathcal{F} with an inflection point in $\{x_2, \ldots, x_{n-1}\}$.

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 12/35

 Form f̂^m_n by linear interpolation: this may not lie in F^m if m ∉ {x₁,...,x_n}; it is the LSE over a modified class H^m

Proposition. For each $m \in [0, 1]$, there exists an LSE \tilde{f}_n^m over \mathcal{F}^m that is uniquely determined at x_1, \ldots, x_n , and there exists an LSE \tilde{f}_n over \mathcal{F} with an inflection point in $\{x_2, \ldots, x_{n-1}\}$.

 Form f̂^m_n by linear interpolation: this may not lie in F^m if m ∉ {x₁,...,x_n}; it is the LSE over a modified class H^m

Proposition. For each $m \in [0, 1]$, there exists an LSE \tilde{f}_n^m over \mathcal{F}^m that is uniquely determined at x_1, \ldots, x_n , and there exists an LSE \tilde{f}_n over \mathcal{F} with an inflection point in $\{x_2, \ldots, x_{n-1}\}$.

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 12/35

*f*_n^m is unique because *H*^m is convex, but *f*_n may not even be uniquely defined on {*x*₁,..., *x*_n}

Proposition. For each $m \in [0, 1]$, there exists an LSE \tilde{f}_n^m over \mathcal{F}^m that is uniquely determined at x_1, \ldots, x_n , and there exists an LSE \tilde{f}_n over \mathcal{F} with an inflection point in $\{x_2, \ldots, x_{n-1}\}$.

*f*_n^m is unique because *H*^m is convex, but *f*_n may not even be uniquely defined on {*x*₁,..., *x*_n}

L² projection framework

For a general probability distribution P on [0, 1] × ℝ with a finite second moment, consider minimising

$$f \mapsto L(f, P) = \int_{[0,1] \times \mathbb{R}} (y - f(x))^2 dP(x, y)$$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 13/35

over \mathcal{F}^m for a fixed $m \in [0, 1]$, or over \mathcal{F} .

L² projection framework

For a general probability distribution P on [0, 1] × ℝ with a finite second moment, consider minimising

$$f \mapsto L(f, P) = \int_{[0,1] \times \mathbb{R}} (y - f(x))^2 dP(x, y)$$

over \mathcal{F}^m for a fixed $m \in [0, 1]$, or over \mathcal{F} .

ψ⁰_m(P) = argmin_{f∈F^m} L(f, P) and ψ⁰(P) = argmin_{f∈F} L(f, P) are well-defined under mild conditions on P, but uniqueness (P^X almost everywhere) is not guaranteed for the latter.

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ 臣 のへで 13/35

L² projection framework

For a general probability distribution P on [0, 1] × ℝ with a finite second moment, consider minimising

$$f \mapsto L(f, P) = \int_{[0,1] \times \mathbb{R}} (y - f(x))^2 dP(x, y)$$

over \mathcal{F}^m for a fixed $m \in [0, 1]$, or over \mathcal{F} .

- $\psi_m^0(P) = \operatorname{argmin}_{f \in \mathcal{F}^m} L(f, P)$ and $\psi^0(P) = \operatorname{argmin}_{f \in \mathcal{F}} L(f, P)$ are well-defined under mild conditions on P, but uniqueness $(P^X \text{ almost everywhere})$ is not guaranteed for the latter.
- Continuity results for (m, P) → ψ⁰_m(P), P → ψ⁰(P), (m, P) → inf_{f∈F^m} L(f, P) and P → inf_{f∈F} L(f, P) with respect to the 2-Wasserstein distance W₂ and notions of set convergence

Consistency and robustness

• Regression framework (triangular array scheme): $Y_{ni} = f_0(x_{ni}) + \xi_{ni}$ for $n \in \mathbb{N}$ and $1 \le i \le n$, where $\xi_{n1}, \ldots, \xi_{nn}$ are i.i.d. with mean zero and finite variance

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 14/35

Consistency and robustness

- Regression framework (triangular array scheme): $Y_{ni} = f_0(x_{ni}) + \xi_{ni}$ for $n \in \mathbb{N}$ and $1 \le i \le n$, where $\xi_{n1}, \ldots, \xi_{nn}$ are i.i.d. with mean zero and finite variance
- **Consistency** when $f_0 \in \mathcal{F}$ has a unique inflection point m_0 :

Theorem. Suppose $\mathbb{P}_n^X = n^{-1} \sum_{i=1}^n \delta_{x_{ni}}$ converges weakly to a distribution P_0^X with supp $P_0^X = [0, 1]$ and $P_0^X(\{m\}) = 0$ for all $m \in [0, 1]$. For $n \in \mathbb{N}$, let $\tilde{g}_n \in \{\hat{f}_n^{m_0}, \tilde{f}_n\}$ and let \tilde{m}_n denote any inflection point of \tilde{g}_n . Then for any closed $A \subseteq [0, 1] \setminus \{m_0\}$,

$$\widetilde{m}_n \stackrel{p}{\to} m_0, \qquad \sup_{x \in A} |(\widetilde{g}_n - f_0)(x)| \stackrel{p}{\to} 0.$$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 14/35

Consistency and robustness

- Regression framework (triangular array scheme): $Y_{ni} = f_0(x_{ni}) + \xi_{ni}$ for $n \in \mathbb{N}$ and $1 \le i \le n$, where $\xi_{n1}, \ldots, \xi_{nn}$ are i.i.d. with mean zero and finite variance
- **Consistency** when $f_0 \in \mathcal{F}$ has a unique inflection point m_0 :

Theorem. Suppose $\mathbb{P}_n^X = n^{-1} \sum_{i=1}^n \delta_{x_{ni}}$ converges weakly to a distribution P_0^X with supp $P_0^X = [0,1]$ and $P_0^X(\{m\}) = 0$ for all $m \in [0,1]$. For $n \in \mathbb{N}$, let $\tilde{g}_n \in \{\hat{f}_n^{m_0}, \tilde{f}_n\}$ and let \tilde{m}_n denote any inflection point of \tilde{g}_n . Then for any closed $A \subseteq [0,1] \setminus \{m_0\}$,

$$\widetilde{m}_n \stackrel{p}{\to} m_0, \qquad \sup_{x \in A} |(\widetilde{g}_n - f_0)(x)| \stackrel{p}{\to} 0.$$

Robustness to misspecification (f₀ ∉ F): "f̂^{m₀}_n, f̃_n converge to the projections of f₀ onto F^{m₀}, F respectively"

Finite-sample risk bounds

- For fixed n∈ N, consider a fixed design regression model Y_i = f₀(x_i) + ξ_i, i = 1,..., n in which ξ₁,...,ξ_n are independent and sub-Gaussian with parameter 1.
- Global loss function: for $g: [0,1] \to \mathbb{R}$, let $\|g\|_n \equiv \|g\|_{L^2(\mathbb{P}^X_n)} = \left(\sum_{i=1}^n g^2(x_i)/n\right)^{1/2}$.
- We prove sharp oracle inequalities to quantify the worst-case and adaptive performance of S-shaped LSEs \tilde{f}_n : these apply to any regression function $f_0: [0, 1] \to \mathbb{R}$ and take the form

$$\mathbb{E}\big(\|\widetilde{f}_n - f_0\|_n\big) \leq \inf_{f \in \mathcal{F}} \big\{\|f_0 - f\|_n + r_n(f)\big\}, \quad \text{where}$$

*||f*₀ − *f* ||_n is an approximation error term with leading constant 1;
 *r*_n(*f*) is an estimation error term.

• Let $R := n^{-1}(x_n - x_1) / \min_{2 \le i \le n} (x_i - x_{i-1})$. For $f \in \mathcal{F}$, define

$$V(f) := f(x_n) - f(x_1) = \max_{1 \le i \le n} f(x_i) - \min_{1 \le i \le n} f(x_i).$$

• Let
$$R := n^{-1}(x_n - x_1) / \min_{2 \le i \le n} (x_i - x_{i-1})$$
. For $f \in \mathcal{F}$, define

$$V(f) := f(x_n) - f(x_1) = \max_{1 \le i \le n} f(x_i) - \min_{1 \le i \le n} f(x_i).$$

Theorem. There exists a universal C > 0 such that for every $f_0: [0,1] \to \mathbb{R}$, $n \ge 2$ and LSE \tilde{f}_n over \mathcal{F} , we have

$$\|\tilde{f}_n - f_0\|_n \le \inf_{f \in \mathcal{F}} \left\{ \|f - f_0\|_n + \frac{C(1 + V(f))^{1/3}}{n^{1/3}} \wedge \frac{CR^{1/10}(1 + V(f))^{1/5}}{n^{2/5}} \right\} + \sqrt{\frac{8t}{n}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 16/35

with probability at least $1 - e^{-t}$, for every t > 0.

• Let
$$R := n^{-1}(x_n - x_1) / \min_{2 \le i \le n} (x_i - x_{i-1})$$
. For $f \in \mathcal{F}$, define

$$V(f) := f(x_n) - f(x_1) = \max_{1 \le i \le n} f(x_i) - \min_{1 \le i \le n} f(x_i).$$

Theorem. There exists a universal C > 0 such that for every $f_0: [0,1] \to \mathbb{R}$, $n \ge 2$ and LSE \tilde{f}_n over \mathcal{F} , we have

$$\mathbb{E}_{f_0}(\|\tilde{f}_n - f_0\|_n) \leq \inf_{f \in \mathcal{F}} \left\{ \|f - f_0\|_n + \frac{C(1 + V(f))^{1/3}}{n^{1/3}} \wedge \frac{CR^{1/10}(1 + V(f))^{1/5}}{n^{2/5}} \right\} + \sqrt{\frac{2\pi}{n}}.$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ⑦ Q ⁽²⁾ 16/35

• Let $R := n^{-1}(x_n - x_1) / \min_{2 \le i \le n} (x_i - x_{i-1})$. For $f \in \mathcal{F}$, define $V(f) := f(x_n) - f(x_1) = \max_{1 \le i \le n} f(x_i) - \min_{1 \le i \le n} f(x_i)$.

Conclusion: when $f_0 \in \mathcal{F}$, or f_0 is close to \mathcal{F} in an $L^2(\mathbb{P}_n^X)$ sense:

*f*_n attains the optimal worst-case risk of order n^{-2/5} with respect
 to L²(P^X_n)-loss when the design points are 'near-equispaced'.

• Let $R := n^{-1}(x_n - x_1) / \min_{2 \le i \le n} (x_i - x_{i-1})$. For $f \in \mathcal{F}$, define $V(f) := f(x_n) - f(x_1) = \max_{1 \le i \le n} f(x_i) - \min_{1 \le i \le n} f(x_i)$.

Conclusion: when $f_0 \in \mathcal{F}$, or f_0 is close to \mathcal{F} in an $L^2(\mathbb{P}_n^X)$ sense:

*f*_n attains the optimal worst-case risk of order n^{-2/5} with respect
 to L²(P^X_n)-loss when the design points are 'near-equispaced'.

• For adversarially chosen design configurations, the worst-case risk of \tilde{f}_n can be of order $n^{-1/3}$.

- Let \mathcal{H} be the set of piecewise affine $f \in \mathcal{F}$ with kinks in $\{x_2, \ldots, x_{n-1}\}$.
- For f ∈ H, denote by k(f) the number of affine pieces of f, i.e. the smallest k ∈ [n] such that f is affine on each of k subintervals I₁,..., I_k that partition [0, 1].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/35

- Let \mathcal{H} be the set of piecewise affine $f \in \mathcal{F}$ with kinks in $\{x_2, \ldots, x_{n-1}\}$.
- For f ∈ H, denote by k(f) the number of affine pieces of f, i.e. the smallest k ∈ [n] such that f is affine on each of k subintervals I₁,..., I_k that partition [0, 1].

Theorem. For every $f_0: [0,1] \to \mathbb{R}$, $n \ge 2$ and LSE \tilde{f}_n over \mathcal{F} , we have

$$\|\tilde{f}_n - f_0\|_n \le \inf_{f \in \mathcal{H}} \left\{ \|f - f_0\|_n + \sqrt{\frac{32(k(f) + 1)}{n} \log\left(\frac{en}{k(f) + 1}\right)} \right\} + \sqrt{\frac{2(t + \log n)}{n}}$$

with probability at least $1 - e^{-t}$, for every t > 0.

- Let \mathcal{H} be the set of piecewise affine $f \in \mathcal{F}$ with kinks in $\{x_2, \ldots, x_{n-1}\}$.
- For f ∈ H, denote by k(f) the number of affine pieces of f, i.e. the smallest k ∈ [n] such that f is affine on each of k subintervals I₁,..., I_k that partition [0, 1].

Theorem. For every $f_0: [0,1] \to \mathbb{R}$, $n \ge 2$ and LSE \tilde{f}_n over \mathcal{F} , we have

$$\mathbb{E}_{f_0}(\|\tilde{f}_n - f_0\|_n) \le \inf_{f \in \mathcal{H}} \left\{ \|f - f_0\|_n + 8\sqrt{\frac{k(f) + 1}{n} \log\left(\frac{en}{k(f) + 1}\right)} \right\}.$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q (P 17/35

- Let \mathcal{H} be the set of piecewise affine $f \in \mathcal{F}$ with kinks in $\{x_2, \ldots, x_{n-1}\}$.
- For f ∈ H, denote by k(f) the number of affine pieces of f, i.e. the smallest k ∈ [n] such that f is affine on each of k subintervals l₁,..., l_k that partition [0, 1].

Conclusion: when $f_0 \in \mathcal{F}$, or f_0 is close to \mathcal{F} in an $L^2(\mathbb{P}_n^X)$ sense,

f̃_n adaptively attains the parametric rate of order n^{-1/2} (up to a logarithmic factor) when the approximating function *f* ∈ *F* is piecewise affine with a small number of affine pieces.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の文(2) 17/35

Inflection point estimation

• Assumptions on a sequence of regression models $Y_{ni} = f_0(x_{ni}) + \xi_{ni}, i = 1, ..., n$ (triangular array scheme):

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 18/35

Inflection point estimation

- Assumptions on a sequence of regression models $Y_{ni} = f_0(x_{ni}) + \xi_{ni}, i = 1, ..., n$ (triangular array scheme):
- $x_{ni} = i/n$ and $\xi_{n1}, \ldots, \xi_{nn} \stackrel{\text{iid}}{\sim} P_{\xi}$ for all $n \in \mathbb{N}$ and $1 \le i \le n$, where P_{ξ} is sub-Gaussian with parameter 1.

Inflection point estimation

- Assumptions on a sequence of regression models $Y_{ni} = f_0(x_{ni}) + \xi_{ni}, i = 1, ..., n$ (triangular array scheme):
- $x_{ni} = i/n$ and $\xi_{n1}, \ldots, \xi_{nn} \stackrel{\text{iid}}{\sim} P_{\xi}$ for all $n \in \mathbb{N}$ and $1 \le i \le n$, where P_{ξ} is sub-Gaussian with parameter 1.

Local smoothness condition: $f_0 \in \mathcal{F}$ has a unique inflection point $m_0 \in (0, 1)$, and there exists B > 0 such that as $x \to m_0$, either

$$f_0(x) = f_0(m_0) - B(1 + o(1)) \operatorname{sgn}(x - m_0) |x - m_0|^{\alpha}$$

for some $\alpha \in (0,1)$, or

 $f_0(x) = f_0(m_0) + f_0'(m_0)(x - m_0) + B(1 + o(1)) \operatorname{sgn}(x - m_0) |x - m_0|^{\alpha}$

for some $\alpha \in (1, \infty)$.
• Assumptions on a sequence of regression models $Y_{ni} = f_0(x_{ni}) + \xi_{ni}, i = 1, ..., n$ (triangular array scheme):

Local smoothness condition: $f_0 \in \mathcal{F}$ has a unique inflection point $m_0 \in (0, 1)$, and there exists B > 0 such that as $x \to m_0$, either

$$f_0(x) = f_0(m_0) - Big(1+o(1)ig) \operatorname{sgn}(x-m_0) |x-m_0|^lpha$$

for some $lpha \in (0,1)$, or

 $f_0(x) = f_0(m_0) + f_0'(m_0)(x - m_0) + B(1 + o(1)) \operatorname{sgn}(x - m_0) |x - m_0|^{\alpha}$

for some $\alpha \in (1, \infty)$.

• When $\alpha \geq 3$ is an odd integer, this holds if f_0 is locally C^{α} at m_0 and $f_0^{(k)}(m_0) = 0 \neq f_0^{(\alpha)}(m_0)$ for $2 \leq k \leq \alpha - 1$.

Theorem. Under the assumptions on the previous slide, let (\tilde{f}_n) be any sequence of LSEs over \mathcal{F} , and for each n, let \tilde{m}_n be an inflection point of \tilde{f}_n . Then $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/(2\alpha+1)})$.

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ℃ 19/35

Theorem. Under the assumptions on the previous slide, let (\tilde{f}_n) be any sequence of LSEs over \mathcal{F} , and for each n, let \tilde{m}_n be an inflection point of \tilde{f}_n . Then $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/(2\alpha+1)})$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ ● ○ Q ○ 19/35

• For example, for $f_0: x \mapsto \Phi(x - m_0)$, we have $\alpha = 3$ and therefore $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/7})$.

Theorem. Under the assumptions on the previous slide, let (\tilde{f}_n) be any sequence of LSEs over \mathcal{F} , and for each n, let \tilde{m}_n be an inflection point of \tilde{f}_n . Then $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/(2\alpha+1)})$.

- For example, for $f_0: x \mapsto \Phi(x m_0)$, we have $\alpha = 3$ and therefore $\tilde{m}_n m_0 = O_p((n/\log n)^{-1/7})$.
- Proof idea: If m_n is a long way from m_0 , then on the interval between them, $\text{RSS}_n(\hat{f}_n^{m_n}) > \text{RSS}_n(\hat{f}_n^{m_0})$ due to misspecification: there is a long subinterval between m_0 and m_n on which one of f_0 , $\hat{f}_n^{m_n}$ is convex and the other is concave.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の�� 19/35

Theorem. Under the assumptions on the previous slide, let (\tilde{f}_n) be any sequence of LSEs over \mathcal{F} , and for each n, let \tilde{m}_n be an inflection point of \tilde{f}_n . Then $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/(2\alpha+1)})$.

- For example, for $f_0: x \mapsto \Phi(x m_0)$, we have $\alpha = 3$ and therefore $\tilde{m}_n m_0 = O_p((n/\log n)^{-1/7})$.
- Proof idea: If m_n is a long way from m_0 , then on the interval between them, $\text{RSS}_n(\hat{f}_n^{m_n}) > \text{RSS}_n(\hat{f}_n^{m_0})$ due to misspecification: there is a long subinterval between m_0 and m_n on which one of f_0 , $\hat{f}_n^{m_n}$ is convex and the other is concave.

• However, $\operatorname{RSS}_n(\tilde{f}_n) - \operatorname{RSS}_n(\hat{f}_n^{m_0}) \leq 0$ by definition of $\tilde{f}_n = \hat{f}_n^{\tilde{m}_n}$.

Theorem. Under the assumptions on the previous slide, let (\tilde{f}_n) be any sequence of LSEs over \mathcal{F} , and for each n, let \tilde{m}_n be an inflection point of \tilde{f}_n . Then $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/(2\alpha+1)})$.

Complementary local asymptotic minimax lower bound:

- For r > 0, let $\mathcal{F}(f_0, r) := \{ f \in \mathcal{F} : \int_0^1 (f f_0)^2 < r^2 \}.$
- For f ∈ F, write I_f for the set of inflection points of f and let d(x, I_f) := inf_{z∈I_f} |x − z| for x ∈ [0, 1].

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ の Q @ 19/35

Theorem. Under the assumptions on the previous slide, let (\tilde{f}_n) be any sequence of LSEs over \mathcal{F} , and for each n, let \tilde{m}_n be an inflection point of \tilde{f}_n . Then $\tilde{m}_n - m_0 = O_p((n/\log n)^{-1/(2\alpha+1)})$.

Complementary local asymptotic minimax lower bound:

- For r > 0, let $\mathcal{F}(f_0, r) := \{ f \in \mathcal{F} : \int_0^1 (f f_0)^2 < r^2 \}.$
- For f ∈ F, write I_f for the set of inflection points of f and let d(x, I_f) := inf_{z∈I_f} |x − z| for x ∈ [0, 1].

Proposition. Under the same assumptions, with $\xi_{n1}, \ldots, \xi_{nn} \sim N(0, 1)$ for all *n*, we have

 $\sup_{\tau>0} \liminf_{n\to\infty} \inf_{\breve{m}_n} \sup_{f\in\mathcal{F}(f_0,\tau/\sqrt{n})} n^{1/(2\alpha+1)} \mathbb{E}_f(d(\breve{m}_n,\mathcal{I}_f)) > 0.$

Inflection point result: illustration

< □ ▶ < @ ▶ < \ = ▶ < \ = ⑦ < ♡ < ♡ < 20/35

Inflection point result: illustration

• S-shaped signals with
$$m_0 = 0.3$$
:

$$\begin{split} f_1(x) &= \begin{cases} 2(0.3 - \sqrt{0.09 - x^2}) & \text{for } x \in [0, 0.3) \\ 2\{0.3 + \sqrt{0.49 - (1 - x)^2}\} & \text{for } x \in [0.3, 1]; \end{cases} \\ f_2(x) &= \sin((x - 0.3)\pi/1.4) \mathbbm{1}_{\{x \ge 0.3\}}; \\ f_3(x) &= x + \mathbbm{1}_{\{x \ge 0.3\}}; \\ f_4(x) &= 4/(1 + e^{-2(x - 0.3)}). \end{split}$$

• $f_1: \alpha = 1/2 \Rightarrow \text{rate } O_p(n^{-1/2})$

- f₂: does not satisfy the assumption for any α > 0; rate O_p(n^{-1/3}) for kink estimation
- f_3 : ' $\alpha = 0$ '; rate $O_p(n^{-1})$ for changepoint estimation

•
$$f_4: \alpha = 3 \Rightarrow \text{rate } O_p(n^{-1/7})$$

• To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 21/35

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).

Proposition. Let $x_k < x_\ell$ be knots of \overline{f}_n , so that $\overline{f}_n(x_i) < \overline{f}_n(x_{i+1})$ for $i \in \{k, \ell\}$. Denote by $\overline{f}_{(k:\ell]}$ the isotonic LSE based on $\{(x_i, Y_i) : k+1 \le i \le \ell\}$. Then $\overline{f}_n = \overline{f}_{(k:\ell]}$ on $[x_{k+1}, x_\ell]$.

▲□▶▲@▶▲≣▶▲≣▶ ≣ の९ペ 21/35

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).
- However, the analogous property does not hold in general for an (increasing) convex LSE *f_n* if x_k < x_l are taken to be kinks of *f_n*.

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 21/35

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).
- However, the analogous property does not hold in general for an (increasing) convex LSE *f*_n if x_k < x_ℓ are taken to be kinks of *f*_n.

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).
- However, the analogous property does not hold in general for an (increasing) convex LSE *f*_n if x_k < x_ℓ are taken to be kinks of *f*_n.

∃ つへで 21/35

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).
- However, the analogous property does not hold in general for an (increasing) convex LSE *f*_n if x_k < x_ℓ are taken to be kinks of *f*_n.

- To derive the rate of convergence of \tilde{m}_n , we localise the analysis of \tilde{f}_n to a neighbourhood of m_0 .
- There is a subinterval localisation result for the piecewise constant isotonic LSE *f_n* over the class of increasing functions on [0, 1], based on observations (*x*₁, *Y*₁), ..., (*x_n*, *Y_n*).
- However, the analogous property does not hold in general for an (increasing) convex LSE *f*_n if x_k < x_ℓ are taken to be kinks of *f*_n.

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ⑦ Q ○ 22/35

lie

Proposition. For $m \in [0, 1]$, let \hat{f}_n^m be the LSE over \mathcal{H}^m based on $\{(x_i, Y_i) : i \in [n]\}$, and define the residuals $\hat{\varepsilon}_i = Y_i - \hat{f}_n^m(x_i)$ for $i \in [n]$. Then for all $j \in [n]$, the boundary weights

$$\underline{w}_j := -\frac{\sum_{i=1}^{j-1} \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}, \quad \overline{w}_j := -\frac{\sum_{i=j+1}^n \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$$

in [0, 1], and $\underline{w}_j + \overline{w}_j = \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}.$

Proposition. For $m \in [0, 1]$, let \hat{f}_n^m be the LSE over \mathcal{H}^m based on $\{(x_i, Y_i) : i \in [n]\}$, and define the residuals $\hat{\varepsilon}_i = Y_i - \hat{f}_n^m(x_i)$ for $i \in [n]$. Then for all $j \in [n]$, the boundary weights

$$\underline{w}_j := -\frac{\sum_{i=1}^{j-1} \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}, \quad \overline{w}_j := -\frac{\sum_{i=j+1}^n \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$$

lie in [0, 1], and $\underline{w}_j + \overline{w}_j = \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$. Let $x_k < x_\ell$ be knots of \hat{f}_n^m such that $x_{k+1} \le m \le x_{\ell-1}$. Then \hat{f}_n^m minimises

$$f\mapsto \sum_{i=1}^{k-1}(Y_i-f(x_i))^2+\underline{w}_k(Y_k-f(x_k))^2$$

over all increasing convex $f: [0,1] \rightarrow \mathbb{R}$.

Proposition. For $m \in [0, 1]$, let \hat{f}_n^m be the LSE over \mathcal{H}^m based on $\{(x_i, Y_i) : i \in [n]\}$, and define the residuals $\hat{\varepsilon}_i = Y_i - \hat{f}_n^m(x_i)$ for $i \in [n]$. Then for all $j \in [n]$, the boundary weights

$$\underline{w}_j := -\frac{\sum_{i=1}^{j-1} \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}, \quad \overline{w}_j := -\frac{\sum_{i=j+1}^n \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$$

lie in [0, 1], and $\underline{w}_j + \overline{w}_j = \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$. Let $x_k < x_\ell$ be knots of \hat{f}_n^m such that $x_{k+1} \le m \le x_{\ell-1}$. Then \hat{f}_n^m minimises

$$f\mapsto \overline{w}_\ell \big(Y_\ell - f(x_\ell)\big)^2 + \sum_{i=\ell+1}^n \big(Y_i - f(x_i)\big)^2$$

over all increasing concave $f: [0,1] \rightarrow \mathbb{R}$.

Proposition. For $m \in [0, 1]$, let \hat{f}_n^m be the LSE over \mathcal{H}^m based on $\{(x_i, Y_i) : i \in [n]\}$, and define the residuals $\hat{\varepsilon}_i = Y_i - \hat{f}_n^m(x_i)$ for $i \in [n]$. Then for all $j \in [n]$, the boundary weights

$$\underline{w}_j := -\frac{\sum_{i=1}^{j-1} \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}, \quad \overline{w}_j := -\frac{\sum_{i=j+1}^n \hat{\varepsilon}_i}{\hat{\varepsilon}_j} \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$$

lie in [0, 1], and $\underline{w}_j + \overline{w}_j = \mathbb{1}_{\{\hat{\varepsilon}_j \neq 0\}}$. Let $x_k < x_\ell$ be knots of \hat{f}_n^m such that $x_{k+1} \le m \le x_{\ell-1}$. Then \hat{f}_n^m minimises

$$f \mapsto \overline{w}_k \big(Y_k - f(x_k)\big)^2 + \sum_{i=k+1}^{\ell-1} \big(Y_i - f(x_i)\big)^2 + \underline{w}_\ell \big(Y_\ell - f(x_\ell)\big)^2$$

over all $f \in \mathcal{H}^m$.

Outline

1. Introduction to S-shaped regression functions

< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ < \ = ♪ < \ > 23/35

2. Definitions and theory

3. Computation

ScanAll: brute-force method ScanSelected: refined search SeqConReg: sequential procedure

Computation of S-shaped LSEs: ScanAll

• Aim: given $(x_1, Y_1), \ldots, (x_n, Y_n) \in [0, 1] \times \mathbb{R}$ with $x_1 < \cdots < x_n$, compute the S-shaped LSE \hat{f}_n with minimal inflection point, i.e.

$$\hat{f}_n = \hat{f}_n^{\hat{m}_n}$$
, where $\hat{m}_n = x_{\hat{j}_n}$ and $\hat{j}_n = \underset{1 \le j \le n}{\operatorname{sargmin}} \operatorname{RSS}_n(\hat{f}_n^{x_j})$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ 9 Q @ 24/35

Computation of S-shaped LSEs: ScanAll

Aim: given (x₁, Y₁),..., (x_n, Y_n) ∈ [0, 1] × ℝ with x₁ < ··· < x_n, compute the S-shaped LSE f̂_n with minimal inflection point, i.e.

$$\hat{f}_n = \hat{f}_n^{\hat{m}_n}, \quad ext{where} \quad \hat{m}_n = x_{\hat{\jmath}_n} \quad ext{and} \quad \hat{\jmath}_n = \operatorname*{sargmin}_{1 \leq j \leq n} \mathrm{RSS}_n(\hat{f}_n^{x_j})$$

<□▶ < @▶ < ≧▶ < ≧▶ = ● ● ● 24/35

• Naive brute-force approach (ScanAll): compute \hat{f}_n^m for every $m \in \{x_1, \ldots, x_n\}$, e.g. by an active set or support reduction algorithm (Dümbgen et al., 2007, Groeneboom et al., 2008)

Computation of S-shaped LSEs: ScanAll

Aim: given (x₁, Y₁),..., (x_n, Y_n) ∈ [0, 1] × ℝ with x₁ < ··· < x_n, compute the S-shaped LSE f̂_n with minimal inflection point, i.e.

$$\hat{f}_n = \hat{f}_n^{\hat{m}_n}, \quad ext{where} \quad \hat{m}_n = x_{\hat{\jmath}_n} \quad ext{and} \quad \hat{\jmath}_n = \operatorname*{sargmin}_{1 \leq j \leq n} \mathrm{RSS}_n(\hat{f}_n^{x_j})$$

- Naive brute-force approach (ScanAll): compute \hat{f}_n^m for every $m \in \{x_1, \ldots, x_n\}$, e.g. by an active set or support reduction algorithm (Dümbgen et al., 2007, Groeneboom et al., 2008)
 - $j \mapsto \operatorname{RSS}_n(f_n^{x_j})$ may have multiple local minima

かくで 24/35

ScanAll: example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For j ∈ {1,...,n}, form ĥ^j_n by concatenating the increasing convex LSE f̂_{1,j} on {(x_i, Y_i) : 1 ≤ i ≤ j} and the increasing concave LSE f̂_{n,j+1} on {(x_i, Y_i) : j + 1 ≤ i ≤ n}

- For j ∈ {1,...,n}, form ĥ^j_n by concatenating the increasing convex LSE f̂_{1,j} on {(x_i, Y_i) : 1 ≤ i ≤ j} and the increasing concave LSE f̂_{n,j+1} on {(x_i, Y_i) : j + 1 ≤ i ≤ n}
- \hat{h}_n^j may not lie in \mathcal{F}^{x_j} , in which case $\hat{f}_n^{x_j} \neq \hat{h}_n^j$; nevertheless, we have the following two important facts:

- For j ∈ {1,..., n}, form h^j_n by concatenating the increasing convex LSE f¹_{1,j} on {(x_i, Y_i) : 1 ≤ i ≤ j} and the increasing concave LSE f^î_{n,j+1} on {(x_i, Y_i) : j + 1 ≤ i ≤ n}
- \hat{h}_n^j may not lie in \mathcal{F}^{x_j} , in which case $\hat{f}_n^{x_j} \neq \hat{h}_n^j$; nevertheless, we have the following two important facts:
 - A. If $\hat{h}_n^j \in \mathcal{F}^{x_j}$, then $\hat{f}_n^{x_j} = \hat{h}_n^j$ (LSE over a larger set)
 - **B.** Subinterval localisation: Given any LSE \tilde{f}_n over \mathcal{F} , if either x_j is its smallest inflection point or x_{j+1} is its largest inflection point, then $\tilde{f}_n = \hat{h}_n^j$ (with weights $\overline{w}_j = 0 = 1 \underline{w}_j$) and $Y_j \leq \tilde{f}_n(x_j) \leq \tilde{f}_n(x_{j+1}) \leq Y_{j+1}$

Refined strategy: ScanSelected

- Computational gains based on subinterval localisation: to locate $\hat{j}_n = \operatorname{sargmin}_{1 \le j \le n} \operatorname{RSS}_n(\hat{f}_n^{x_j}),$
 - 1. We can refine the search by discarding those j for which $Y_j > Y_{j+1}$: only n-1 pairwise comparisons required
 - 2. For the remaining indices j, compute \hat{h}_n^j by fitting $\hat{f}_{1,j}$ and $\hat{f}_{n,j+1}$ separately on disjoint subsets of the original data

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ 27/35

Refined strategy: ScanSelected

- Computational gains based on subinterval localisation: to locate $\hat{j}_n = \operatorname{sargmin}_{1 \le j \le n} \operatorname{RSS}_n(\hat{f}_n^{x_j}),$
 - 1. We can refine the search by discarding those j for which $Y_j > Y_{j+1}$: only n-1 pairwise comparisons required
 - 2. For the remaining indices j, compute \hat{h}_n^j by fitting $\hat{f}_{1,j}$ and $\hat{f}_{n,j+1}$ separately on disjoint subsets of the original data
- Let \mathcal{J} be the set of j for which \hat{h}_n^j is an S-shaped function in \mathcal{F}^{x_j} . Then $\hat{f}_n^{x_j} = \hat{h}_n^j$ for all $j \in \mathcal{J}$ by Fact **A** and $\hat{j}_n \in \mathcal{J}$ by Fact **B**, so

$$\hat{j}_n = \operatorname{sargmin}_{j \in \mathcal{J}} \operatorname{RSS}_n(\hat{h}_n^j)$$

Refined strategy: ScanSelected

- Computational gains based on subinterval localisation: to locate $\hat{j}_n = \operatorname{sargmin}_{1 \le j \le n} \operatorname{RSS}_n(\hat{f}_n^{x_j}),$
 - 1. We can refine the search by discarding those j for which $Y_j > Y_{j+1}$: only n-1 pairwise comparisons required
 - 2. For the remaining indices j, compute \hat{h}_n^j by fitting $\hat{f}_{1,j}$ and $\hat{f}_{n,j+1}$ separately on disjoint subsets of the original data
- Let \mathcal{J} be the set of j for which \hat{h}_n^j is an S-shaped function in \mathcal{F}^{x_j} . Then $\hat{f}_n^{x_j} = \hat{h}_n^j$ for all $j \in \mathcal{J}$ by Fact **A** and $\hat{j}_n \in \mathcal{J}$ by Fact **B**, so

$$\hat{j}_n = \operatorname{sargmin}_{j \in \mathcal{J}} \operatorname{RSS}_n(\hat{h}_n^j)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ · · · ○ ○ ○ 27/35

• Can we use $\hat{f}_{1,j-1}$ as a warm start for computing $\hat{f}_{1,j}$?
ScanSelected: example

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ り < ○ 28/35

 More efficient approach: we reveal new observations one by one, and update the increasing convex and increasing concave least squares fits using a mixed primal-dual bases algorithm (Fraser and Massam, 1989, Meyer, 1999).

<□▶ < @▶ < ≧▶ < ≧▶ = ● のへで 29/35

 More efficient approach: we reveal new observations one by one, and update the increasing convex and increasing concave least squares fits using a mixed primal-dual bases algorithm (Fraser and Massam, 1989, Meyer, 1999).

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 29/35

• Given $\hat{f}_{1,j-1}$ and a new observation (x_j, Y_j) , note that if $Y_j \ge \hat{f}_{1,j-1}(x_j)$, then $\hat{f}_{1,j} = \hat{f}_{1,j-1}$ on $\{x_1, \ldots, x_j\}$.

- More efficient approach: we reveal new observations one by one, and update the increasing convex and increasing concave least squares fits using a mixed primal-dual bases algorithm (Fraser and Massam, 1989, Meyer, 1999).
- Given $\hat{f}_{1,j-1}$ and a new observation (x_j, Y_j) , note that if $Y_j \ge \hat{f}_{1,j-1}(x_j)$, then $\hat{f}_{1,j} = \hat{f}_{1,j-1}$ on $\{x_1, \ldots, x_j\}$.
- Otherwise, if $Y_j < \hat{f}_{1,j-1}(x_j)$, then start with the LSE $\hat{f}_{1,j-1}$ based on $(x_1, Y_1), \ldots, (x_{j-1}, Y_{j-1}), (x_j, \tilde{Y}_j \equiv \hat{f}_{1,j-1}(x_j))$, and decrease the value of \tilde{Y}_j .

▲□▶▲@▶▲≣▶▲≣▶ ≣ のへで 29/35

- More efficient approach: we reveal new observations one by one, and update the increasing convex and increasing concave least squares fits using a mixed primal-dual bases algorithm (Fraser and Massam, 1989, Meyer, 1999).
- Given $\hat{f}_{1,j-1}$ and a new observation (x_j, Y_j) , note that if $Y_j \ge \hat{f}_{1,j-1}(x_j)$, then $\hat{f}_{1,j} = \hat{f}_{1,j-1}$ on $\{x_1, \ldots, x_j\}$.
- Otherwise, if $Y_j < \hat{f}_{1,j-1}(x_j)$, then start with the LSE $\hat{f}_{1,j-1}$ based on $(x_1, Y_1), \ldots, (x_{j-1}, Y_{j-1}), (x_j, \tilde{Y}_j \equiv \hat{f}_{1,j-1}(x_j))$, and decrease the value of \tilde{Y}_j .
- The LSE fit is a piecewise linear function of \tilde{Y}_j ; we need to track the changes in the 'active' set of kinks.

Summary of algorithm (R package Sshaped)

- 1. Discard all $j \in \{1, \ldots, n\}$ for which $Y_j > Y_{j+1}$.
- For each of the remaining j, use SeqConReg to compute the increasing convex LSE f̂_{1,j} and increasing concave LSE f̂_{n,j+1}. Concatenate these by linear interpolation to form ĥ^j_n. Discard j if ĥ^j_n ∉ F^{x_j}, i.e. if

$$rac{\hat{f}_{n,j+1}(x_{j+2}) - \hat{f}_{n,j+1}(x_{j+1})}{x_{j+2} - x_{j+1}} > rac{\hat{f}_{n,j+1}(x_{j+1}) - \hat{f}_{1,j}(x_j)}{x_{j+1} - x_j}.$$

3. Let \mathcal{J} be the set of indices j retained after Steps 1 and 2. Find

$$\tilde{j} = \operatorname{sargmin}_{j \in \mathcal{J}} \operatorname{RSS}_n(\hat{h}_n^j).$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ● ■ の Q @ 30/35

Return $(x_{\tilde{j}}, \hat{h}_n^{\tilde{j}}) = (\hat{m}_n, \hat{f}_n).$

Running time comparison

Log-log plots of the running time (in seconds) of the SeqConReg (A), ScanSelected (•) and ScanAll (•) algorithms, for sample sizes $n \in \{100, 200, 500, 1000\}$ and noise levels $\sigma \in \{1, 0.1, 0.01\}$

Example: simulated data

х

<□▶ < @ ▶ < E ▶ < E ▶ E の Q @ 32/35

Example: LIDAR air pollution data

■ 釣�@ 33/35

Thank you for listening!

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 34/35

References

Dümbgen, L., Hüsler, A. and Rufibach, K. (2007). Active set and EM algorithms for log-concave densities based on complete and censored data. Available at https://arxiv.org/abs/0707.4643v4.

Feng, O. Y., Chen, Y., Han, Q., Carroll, R. J. and Samworth, R. J. (2022). Nonparametric, tuning-free estimation of S-shaped functions. *J. Roy. Statist. Soc., Ser. B, to appear.*

Feng, O. Y., Chen, Y., Han, Q., Carroll, R. J. and Samworth, R. J. (2021). Sshaped: Estimation of an S-shaped function. R package version 0.99. Available at https://cran.r-project.org/web/packages/SShaped.

Fraser, D. A. S. and Massam, H. (1989). A mixed primal-dual bases algorithm for regression under inequality constraints. Application to concave regression. *Scand. J. Statist.*, **16**, 65–74.

Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2008). The support reduction algorithm for computing non-parametric function estimates in mixture models. *Scand. J. Statist.*, **35**, 385–399.

Meyer, M. (1999). An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions. J. Statist. Plann. Inference, 81, 13–31.