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Introduction

» High dimensional linear regression models are widely used and
studied

» Often applied to time series data
» Assumes stationarity of conditional relationship E[Y¢|x¢]

» This is unrealistic!



Motivating Example

Sea Ice Extent

Figure: Monthly-adjusted Arctic sea ice extent, 1984-2018. Estimated
change points marked in red.



Contributions

For the piecewise stationary regression model, we propose MOSEG,
a novel 2-step algorithm for estimating change point numbers and
locations.
This is
» Minimax-optimal under Gaussian design
» Consistent under heavy tails and dependence (functional
dependence)
» Consistent under multiscale changes (Large & frequent /
Small & rare in same series) with a bottom-up extension

» Lowest cost and runtime of all competing methods



Piecewise-Stationary Sparse Model

We observe (Y, x¢), t = 1,...,n, with x; = (Xi¢,..., Xpr)" € RP
where

X;I—,Bo-i-&“t fordg=0<t <,
x;rﬂl 4+ e for iy <t <0y,

xtT,Bq +er forOg <t <n=0411,

For all j, ,Bj_l 75 ,BJ'
Possibly p > n

Noise ¢, satisfies E(g;) = 0 and Var(g) = o2 € (0, 00)

>

>

» (3, is sparse - at most 5 non-zero entries

>

» (xt,e¢) possibly heavy tailed and dependent



Method: Step 1: Detector

Scan the data with detector

G~ .
Tk(G) =/ > ‘5k,k+c — Bk—G.k .

where G is chosen bandwidth, using Lasso solutions

e

Bs,e()\) = arg mingcpe Z (Ye —x{B)* +\We—s|B)

t=s+1

forkingrid T C{k:G<k<n-G}



Test signal teeth10 (top) and MOSUM detector with G = 10:
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Method: Step 1: Detector

Select local maximisers {5]-}?:1 with T exceeding threshold D as
J
Step 1 estimators

1N
LY

Figure: Left: T ={G,2G,...,n— G}.
Right: 7 ={G,(11/10)G,...,n— G}.
Step 1 estimators in red; Step 2 in purple.




Method: Step 2: Location Refinement

For 0, pick ,BJF = Bov(@}—G),@} and ,61'3 = ,65137(@3+G)An from either
side. o
Plug each {6;}7_, into left/right loss

k 0i+G
QKB AY) = X (i—x[BV+ Y (Ye—x[ BV
t=6,—G+1 t=k+1

selecting ¢; = arg min, Q as Step 2 estimator?.

2Kaul et al. (2019) An efficient two step algorithm for high dimensional
change point regression models without grid search. JMLR



Method: Step 2: Location Refinement
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Multiscale Method

How should we pick the bandwidth? Changes could be multiscale,
with size A?) = min; 51-2 -min(0j41 — 0,0, — 0;_1) (where

6 = 1Bj — Bj-1l2)

Solution: run algorithm with multiple bandwidths
G ={Gi,..., Gy}, merge results bottom-up



Assumptions

Cov(x:) = Xy has bounded eigenvalues

Deviation bounds hold for

1 e

7\/5 Zt:s+1 EtXt - and
1 e T

Je—s Drmsr1(Ye — %, B:,e)xt -

Restricted strong convexity holds on all large enough pairs
e—s5> Copfhp
> pnp = log>*3/2(p v n),~ > 0 under heavy tails?

> pnp = log!?(p Vv n) under (sub)Gaussian design
Bandwidth

> 2G < minj(ﬂj — 0j_1)

> Multiscale: For each 0;, 4G(;y < min(0;11 — 0;,0; — 0;_1)
and min; 5fG grows fast enough

3~y < 1 sub-exponential, v < 3/2 sub-Weibull



Assumptions: moments and dependence

» Deviation bounds and Restricted strong convexity hold under
bounded functional dependence (Zhang and Wu 2017), which
holds under fairly general conditions on moments/dependence

> Example: vector moving average [Zt} = 20 Deki—e,

t
» | Dy ik| decay algebraically as £ — oo
> innovations &; (i) have finite moments, or (ii) are Gaussian



Results

» Under Gaussianity of &;, we have optimal (up to log factors)
» Detection rate (Step 1): If min; 6126 > cslog(p V n) then
> Eoca?isation rate (Step 2): max; 6f|§J — 0] < Cslog(pV n)
» Under heavy tails, we have localisation rate
C(slog(p v n))*r+3
» Step 1 estimators localise at sub-optimal rate

» In the multiscale setting, the rates are the same



Competitors

Typically, Lasso(a, b) = O(b3 + ab?)

Multiscale Computational
complexity
MOSEG No O(+¢ - Lasso(G, p))
MOSEG.MS Yes O(;¢ - Lasso(n, p))
Wang et. al. 2021 No O(nlog?(n) - GroupLasso(n, p))
Kaul et. al. 2019 No O(§ - Lasso(n, p) + SA(§))

Xu et. al. 2022 No O(n?Lasso(n, p))




Computation: selecting threshold and A

Select (), g) using sample splitting
(1) Split into odd/even folds for testing/training

(2) Order candidate changes 0(3), ..., 05, by descending detector
value

(3) For g =0,1,...,qo, fit model with g "biggest” changes on
training set, predict for testing set

(4) Pick (A, q) in A x {0,...,go} minimising error

Coordinate descent (glmnet) gives Bj()\) for A € A for free



Runtime
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Sea ice extent

Russia > Arctic sea ice extent is
retreating

» Influences the Arctic
ecosystem

T
1 Alaska

» Can model this as a
dynamical system with e.g.
weather covariates

Canada

> Piecewise stationarity is
useful and interpretable

“Coulombe, P. G. and Gobel, M. (2021). Arctic amplification of
anthropogenic forcing: a vector autoregressive analysis.-Journal of -Climate



Sea ice extent

n = 418 monthly observations, p = 55 features

Sea Ice Extent

Figure: Monthly-adjusted Arctic sea ice extent, 1984-2018. Estimated
change points marked in red.



Sea ice extent
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Figure: Parameter estimates from each estimated segment obtained by

MOSEG.MS. Variables at different lags are coloured differently in the

y-axis.



Conclusion

v

We propose a two-step method for data segmentation under
the sparse regression model

Achieves minimax optimal detection and localisation, and is
consistent under dependence and heavy tails

Extends to multiscale changes
Cheaper and faster than competitors

Preprint available on ArXiv, R package MOSEG on github
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