High-dimensional data segmentation in regression settings permitting heavy tails and temporal dependence

Dom Owens¹

Compass CDT & Institute for Statistical Science, University of Bristol

December 15, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

¹dom.owens@bristol.ac.uk

Joint work with my supervisor, Dr. Haeran Cho

・ロト・日本・ヨト・ヨー うへの

Introduction

 High dimensional linear regression models are widely used and studied

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Often applied to time series data
- Assumes stationarity of conditional relationship $E[Y_t|\mathbf{x}_t]$
- This is unrealistic!

Motivating Example

Figure: Monthly-adjusted Arctic sea ice extent, 1984-2018. Estimated change points marked in red.

イロト イヨト イヨト イ

Contributions

For the piecewise stationary regression model, we propose MOSEG, a novel 2-step algorithm for estimating change point numbers and locations.

This is

- Minimax-optimal under Gaussian design
- Consistent under heavy tails and dependence (functional dependence)
- Consistent under multiscale changes (Large & frequent / Small & rare in same series) with a bottom-up extension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lowest cost and runtime of all competing methods

Piecewise-Stationary Sparse Model

We observe (Y_t, \mathbf{x}_t) , t = 1, ..., n, with $\mathbf{x}_t = (X_{1t}, ..., X_{pt})^\top \in \mathbb{R}^p$ where

$$Y_t = \begin{cases} \mathbf{x}_t^\top \beta_0 + \varepsilon_t & \text{for } \theta_0 = 0 < t \le \theta_1, \\ \mathbf{x}_t^\top \beta_1 + \varepsilon_t & \text{for } \theta_1 < t \le \theta_2, \\ \vdots \\ \mathbf{x}_t^\top \beta_q + \varepsilon_t & \text{for } \theta_q < t \le n = \theta_{q+1}, \end{cases}$$

- For all j, $\beta_{j-1} \neq \beta_j$
- Possibly $p \gg n$
- β_j is sparse at most s non-zero entries
- Noise ε_t satisfies $E(\varepsilon_t) = 0$ and $Var(\varepsilon) = \sigma_{\varepsilon}^2 \in (0, \infty)$
- $(\mathbf{x}_t, \varepsilon_t)$ possibly heavy tailed and dependent

Method: Step 1: Detector

Scan the data with detector

$$T_k(G) = \sqrt{\frac{G}{2}} \left| \widehat{\beta}_{k,k+G} - \widehat{\beta}_{k-G,k} \right|_2,$$

where G is chosen bandwidth, using Lasso solutions

$$\widehat{\beta}_{s,e}(\lambda) = \arg\min_{\beta \in \mathbb{R}^p} \sum_{t=s+1}^{e} (Y_t - \mathbf{x}_t^{\top} \beta)^2 + \lambda \sqrt{e-s} |\beta|_1$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

for k in grid $\mathcal{T} \subset \{k : G \leq k \leq n - G\}$

Test signal teeth10 (top) and MOSUM detector with G = 10:

Method: Step 1: Detector

Select local maximisers $\{\widetilde{\theta}_j\}_{j=1}^{\widehat{q}}$ with $T_{\widetilde{\theta}_j}$ exceeding threshold D as Step 1 estimators

Figure: Left: $\mathcal{T} = \{G, 2G, \dots, n-G\}$. Right: $\mathcal{T} = \{G, (11/10)G, \dots, n-G\}$. Step 1 estimators in red; Step 2 in purple.

Method: Step 2: Location Refinement

For
$$\widetilde{\theta}_j$$
, pick $\widehat{\beta}_j^{\text{L}} = \widehat{\beta}_{0 \lor (\widetilde{\theta}_j^{\text{L}} - G), \widetilde{\theta}_j^{\text{L}}}$ and $\widehat{\beta}_j^{\text{R}} = \widehat{\beta}_{\widetilde{\theta}_j^{\text{R}}, (\widetilde{\theta}_j^{\text{R}} + G) \land n}$ from either side.
Plug each $\{\widetilde{\theta}_j\}_{j=1}^{\widehat{q}}$ into left/right loss

$$Q\left(k;\widehat{\beta}^{\text{L}},\widehat{\beta}^{\text{R}}\right) = \sum_{t=\widetilde{\theta}_{j}-G+1}^{k} (Y_{t} - \mathbf{x}_{t}^{\top}\widehat{\beta}^{\text{L}})^{2} + \sum_{t=k+1}^{\theta_{j}+G} (Y_{t} - \mathbf{x}_{t}^{\top}\widehat{\beta}^{\text{R}})^{2}$$

selecting $\hat{\theta}_j = \arg \min_k Q$ as Step 2 estimator².

²Kaul et al. (2019) An efficient two step algorithm for high dimensional change point regression models without grid search. JMLR $(\bigcirc \ \) \land (\bigcirc \) \land ()$

Method: Step 2: Location Refinement

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Multiscale Method

How should we pick the bandwidth? Changes could be *multiscale*, with size $\Delta^{(2)} = \min_j \delta_j^2 \cdot \min(\theta_{j+1} - \theta_j, \theta_j - \theta_{j-1})$ (where $\delta_j = |\beta_j - \beta_{j-1}|_2$)

Solution: run algorithm with multiple bandwidths $\mathcal{G} = \{G_1, \ldots, G_H\}$, merge results bottom-up

Assumptions

(1) $\operatorname{Cov}(\mathbf{x}_t) = \mathbf{\Sigma}_x$ has bounded eigenvalues (2) Deviation bounds hold for $\left| \frac{1}{\sqrt{e-s}} \sum_{t=s+1}^{e} \varepsilon_t \mathbf{x}_t \right|_{\infty}$ and $\left| \frac{1}{\sqrt{e-s}} \sum_{t=s+1}^{e} (Y_t - \mathbf{x}_t^{\top} \boldsymbol{\beta}_{s,e}^*) \mathbf{x}_t \right|_{\infty}$

(3) Restricted strong convexity holds on all large enough pairs $e - s \ge C_0 \rho_{n,p}^2$

 $\rho_{n,p} = \log^{2\gamma+3/2}(p \lor n), \gamma > 0$ under heavy tails³
 $\rho_{n,p} = \log^{1/2}(p \lor n)$ under (sub)Gaussian design

(4) Bandwidth

▶ $2G \le \min_j(\theta_j - \theta_{j-1})$ ▶ Multiscale: For each θ_j , $4G_{(j)} \le \min(\theta_{j+1} - \theta_j, \theta_j - \theta_{j-1})$ and $\min_j \delta_j^2 G$ grows fast enough

Assumptions: moments and dependence

- Deviation bounds and Restricted strong convexity hold under bounded functional dependence (Zhang and Wu 2017), which holds under fairly general conditions on moments/dependence
- Example: vector moving average $\begin{bmatrix} \mathbf{x}_t \\ \varepsilon_t \end{bmatrix} = \sum_{\ell=0}^{\infty} \mathbf{D}_{\ell} \boldsymbol{\xi}_{t-\ell},$
 - ▶ $|D_{\ell,ik}|$ decay algebraically as $\ell \to \infty$
 - innovations $\boldsymbol{\xi}_t$ (i) have finite moments, or (ii) are Gaussian

Results

- Under Gaussianity of ξ_t , we have optimal (up to log factors)
 - ▶ Detection rate (Step 1): If $\min_j \delta_j^2 G \ge c \mathfrak{s} \log(p \lor n)$ then $\widehat{q} = q$
 - ► Localisation rate (Step 2): $\max_j \delta_j^2 |\hat{\theta}_j \theta_j| \leq C \mathfrak{s} \log(p \lor n)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Under heavy tails, we have localisation rate $C(\mathfrak{s}\log(p\vee n))^{4\gamma+3}$
- Step 1 estimators localise at sub-optimal rate
- In the multiscale setting, the rates are the same

Competitors

Typically, Lasso
$$(a, b) = O(b^3 + ab^2)$$

	Multiscale	Computational complexity
MOSEG MOSEG.MS	No Yes	$O(rac{n}{rG} \cdot Lasso(G, p))$ $O(rac{n}{rG_1} \cdot Lasso(n, p))$
Wang et. al. 2021 Kaul et. al. 2019 Xu et. al. 2022	No No No	$\overline{\begin{array}{c}O(n\log^2(n)\cdot \text{GroupLasso}(n,p))\\O(\tilde{q}\cdot \text{Lasso}(n,p)+\text{SA}(\tilde{q}))\\O(n^2\text{Lasso}(n,p))\end{array}}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Computation: selecting threshold and λ

Select (λ, \widehat{q}) using sample splitting

- (1) Split into odd/even folds for testing/training
- (2) Order candidate changes $\theta_{(1)}, \ldots, \theta_{(\widetilde{q}_0)}$ by descending detector value

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- (3) For $q = 0, 1, ..., \tilde{q}_0$, fit model with q "biggest" changes on training set, predict for testing set
- (4) Pick (λ, \widehat{q}) in $\Lambda \times \{0, \dots, \widetilde{q}_0\}$ minimising error

Coordinate descent (glmnet) gives $\widehat{\beta}_j(\lambda)$ for $\lambda \in \Lambda$ for free

Runtime

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Sea ice extent

- Arctic sea ice extent is retreating
- Influences the Arctic ecosystem
- Can model this as a dynamical system with e.g. weather covariates
- Piecewise stationarity is useful and interpretable

⁴Coulombe, P. G. and Göbel, M. (2021). Arctic amplification of anthropogenic forcing: a vector autoregressive analysis. Journal of Climate

Sea ice extent

n = 418 monthly observations, p = 55 features

Figure: Monthly-adjusted Arctic sea ice extent, 1984-2018. Estimated change points marked in red.

イロト イヨト イヨト

э

Sea ice extent

Figure: Parameter estimates from each estimated segment obtained by MOSEG.MS. Variables at different lags are coloured differently in the *y*-axis.

Conclusion

- We propose a two-step method for data segmentation under the sparse regression model
- Achieves minimax optimal detection and localisation, and is consistent under dependence and heavy tails
- Extends to multiscale changes
- Cheaper and faster than competitors
- Preprint available on ArXiv, R package MOSEG on github

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ